Abstract

We compare and contrast from a geometric perspective a number of low-dimensional signal models that support stable information-preserving dimensionality reduction. We consider sparse and compressible signal models for deterministic and random signals, structured sparse and compressible signal models, point clouds, and manifold signal models. Each model has a particular geometrical structure that enables signal information to be stably preserved via a simple linear and nonadaptive projection to a much lower dimensional space; in each case the projection dimension is independent of the signal's ambient dimension at best or grows logarithmically with it at worst. As a bonus, we point out a common misconception related to probabilistic compressible signal models, namely, by showing that the oft-used generalized Gaussian and Laplacian models do not support stable linear dimensionality reduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call