Abstract

Despite its importance for the establishment of a carbon‐neutral society, the electrochemical reduction of CO2 to value‐added products has not been commercialized yet because of its sluggish kinetics and low selectivity. The present work reports the fabrication of a low‐crystalline trimetallic (AuCuIn) CO2 electroreduction catalyst and demonstrates its high performance in a gaseous CO2 electrolyzer. The high Faradaic efficiency (FE) of CO formation observed at a low overpotential in a half‐cell test is ascribed to the controlled crystallinity and composition of this catalyst as well as to its faster charge transfer, downshifted d‐band center, and low oxophilicity. The gaseous CO2 electrolyzer with the optimal catalyst as the cathode exhibits superior cell performance with a high CO FE and production rate, outperforming state‐of‐the‐art analogs. Thus, the obtained results pave the way to the commercialization of CO2 electrolyzers and promote the establishment of a greener society.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.