Abstract

Flow batteries are one of the most promising large-scale energy-storage systems. However, the currently used flow batteries have low operation-cost-effectiveness and exhibit low energy density, which limits their commercialization. Herein, a titanium-bromine flow battery (TBFB) featuring very low operation cost and outstanding stability is reported. In this battery, a novel complexing agent, 3-chloro-2-hydroxypropyltrimethyl ammonium chloride, is employed to stabilize bromine/polybromides and suppress Br diffusion. The results reveal that the complexing agent effectively inhibits Br crossover and reduces Br-induced corrosivity, which in turn significantly improves the reliability of the TBFB system. The novel TBFB demonstrates 95% coulombic efficiency and 83% energy efficiency at 40mAcm-2 current density. Moreover, it can run smoothly for more than 1000 cycles without any capacity decay. Furthermore, an assembled 300 W TBFB stack can be continuously operated for more than 500 cycles, thereby confirming the practical applicability of the proposed TBFB. Because the TBFB utilizes an ultralow-cost electrolyte (41.29$kWh-1 ) and porous polyolefin membranes, it serves as a reliable and low-cost energy-storage device. Therefore, considering its ultrahigh stability and low cost, the TBFB can be used as a large-scale energy-storage device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call