Abstract

Low-carbon steel is a commonly used structural material in a wide variety of applications. An anodic oxide layer of this inexpensive alloy has been noted to have interesting photoelectrochemical behaviour similar to that of α-Fe2O3 prepared using other expensive starting materials. An ordered nanoporous oxide layer has been grown on to the low-carbon steel surface by a simple electrochemical anodization process in different electrolytes such as ethylene glycol containing 0.05M NH4F and 3–10 vol% water and 0.5M phosphoric acid solution containing 0.05M NH4F. After anodization, the nanoporous anodic oxide layer has been transformed to α-Fe2O3 by a low-temperature annealing process. Photoelectrochemical characterization of the anodic iron oxide materials has been carried out in 1M KOH electrolyte under a solar simulated illumination using Air Mass (AM) 1.5. The ordered nanoporous oxide layer prepared in ethylene glycol-based electrolyte showed a photocurrent density of about 85 µA cm−2 at 0.4 VAg/AgCl. Whereas the anodic iron oxide prepared by anodization of the low-carbon steel in 0.5M H3PO4 + 0.05M NaF solution showed a photocurrent density of 800 µA cm−2 at 0.4 VAg/AgCl. The improved photoactivity of the phosphate-modified oxide layer could be attributed to the high charge carrier concentration, low charge transfer resistance and better ability to expend holes in the oxygen evolution reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call