Abstract
Hydrolysis of sodium borohydride (NaBH4) is one of the most attractive methods for energy generation of mobile systems used as hydrogen source because of the high gravimetric density and controllable hydrogen generation of NaBH4. However, regeneration of NaBH4 is a key issue that remains to be solved, and the energy efficiency of NaBH4 is unknown. In the present study, the energy efficiency of NaBH4 hydrolysis and the entire process of sodium metaborate (NaBO2) regeneration via reaction with magnesium hydride (MgH2) is determined through thermodynamics calculations. The maximum energy efficiency is 49.91%, indicating that NaBH4 generation by reaction between MgH2 and NaBO2 during ball milling is feasible. An inexpensive high-energy ball milling method is employed to regenerate NaBH4 by reaction of NaBO2 with magnesium–lanthanum hydrides (H–Mg3La). Products after ball milling are characterized through Fourier transform infrared spectroscopy and X-ray diffraction measurements. In the reaction of NaBO2 with H–Mg3La, MgH2 reacts with NaBO2 and then lanthanum hydride (LaH3) reacts with NaBO2 to produce NaBH4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.