Abstract

Neuromorphic devices are electronic devices that mimic the information processing methods of neurons and synapses, enabling them to perform multiple tasks simultaneously with low power consumption and exhibit learning ability. However, their large-scale production and efficient operation remain a challenge. Herein, we fabricated an aluminum-doped zinc oxide (AZO) synaptic transistor via solution-based spin-coating. The transistor is characterized by low production costs and high performance. It demonstrates high responsiveness under UV laser illumination. In addition, it exhibits effective synaptic behaviors under blue LED illumination, indicating high-efficiency operation. The paired-pulse facilitation (PPF) index measured from optical stimulus modulation was 179.6%, indicating strong synaptic connectivity and effective neural communication and processing. Furthermore, by modulating the blue LED light pulse frequency, an excitatory postsynaptic current gain of 4.3 was achieved, demonstrating efficient neuromorphic functionality. This study shows that AZO synaptic transistors are promising candidates for artificial synaptic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.