Abstract
Formaldehyde is a carcinogenic indoor air pollutant emitted from common wood-based materials. Low-cost sensing of formaldehyde is difficult due to inaccuracies in measuring low concentrations and susceptibility of sensors to changing indoor environmental conditions. Currently gas sensors are calibrated by manufacturers using simplistic models which fail to capture their complex behaviour. We evaluated different low-cost gas sensors to ascertain a suitable component to create a mobile sensing node and built a calibration algorithm to correct it. We compared the performance of 2 electrochemical sensors and 3 metal oxide sensors in a controlled chamber against a photo-acoustic reference device. In the chamber the formaldehyde concentrations, temperature and humidity were varied to assess the sensors in diverse environments. Pre-calibration, the electrochemical sensors (mean absolute error (MAE) = 70.8 ppb) outperformed the best performing metal oxide sensor (MAE = 335 ppb). A two-stage calibration model was built, using linear regression followed by random forest, where the residual of the first stage acted as a input for the second. Post-calibration, the metal oxide sensors (MAE = 154 ppb) improved compared to their electrochemical counterparts (MAE = 78.8 ppb). Nevertheless, the uncalibrated electrochemical sensor showed overall superior performance hence was selected for the mobile sensing node.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.