Abstract

Many commercially available pH sensors are fabricated with a glass membrane as the sensing component because of several advantages of glass-based electrodes such as versatility, high accuracy, and excellent stability in various conditions. However, because of their bulkiness and poor mechanical properties, conventional glass-based sensors are not ideal for wearable or flexible applications. Here, we report for the first time the fabrication of a flexible glass-based pH sensor suitable for biomedical and environmental applications where flexibility and stability of the sensor are critical for long-term and real-time monitoring. The sensor was fabricated via a simple and facile approach using the cold atmospheric plasma technique in which a pH sensitive silica coating was deposited from a siloxane precursor onto a carbon electrode. In order to increase the sensitivity and stability of the sensor, we employed a postprocessing step which involves annealing of the silica coated electrode at elevated temperatures. This process was optimized to ensure that the crucial properties such as porosity and hydration functionality were balanced to obtain the best and most reliable sensitivity of the sensor. Our sensitivity test results indicated that these sensors exhibit excellent and stable sensitivity with a slope of about 48 mV/pH (r2 = 0.998) and selectivity across a pH range of 4 to 10 in the presence of various cations. The optimized sensor has shown stable sensitivity for a long period of time (30 h of immersion) and in different bending conditions. We demonstrate in this investigation that this flexible cost-effective pH sensor can withstand the sterilization process resulting from ultraviolet radiation and shows repeatable sensitivity with less than ±5 mV potential drift from the sensitivity values of the standard optimized sensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.