Abstract

Microfluidics are widely used in research ranging from bioengineering and biomedical disciplines to chemistry and nanotechnology. As such, there are a large number of options for the devices used to drive and control flow through microfluidic channels. Commercially available syringe pumps are probably the most commonly used instruments for this purpose, but are relatively high-cost and have inherent limitations due to their flow profiles when they are run open-loop. Here, we present a low-cost ($110) syringe pressure pump that uses feedback control to regulate the pressure into microfluidic chips. Using an open-source microcontroller board (Arduino), we demonstrate an easily operated and programmable syringe pump that can be run using either a PID or bang-bang control method. Through feedback control of the pressure at the inlets of two microfluidic geometries, we have shown stability of our device to within ±1% of the set point using a PID control method and within ±5% of the set point using a bang-bang control method with response times of less than 1 second. This device offers a low-cost option to drive and control well-regulated pressure-driven flow through microfluidic chips.

Highlights

  • Microfluidic systems have become one of the more prolific tools for researchers in the chemical and biological sciences

  • PDMS-based microfluidic devices are used for a wide range of applications including immunoassays, separation of proteins and DNA, and the sorting and manipulation of living cells allowing for researchers to gain insights into cell biology [4]

  • The syringe pump provides positive displacement that forces fluid through a microfluidic chip

Read more

Summary

Introduction

Microfluidic systems have become one of the more prolific tools for researchers in the chemical and biological sciences. Microfluidic systems are not limited to biological research, as they have been used by nanotechnology researchers as a high-throughput way of producing nanodevices [5] and as a platform for many analytical chemistry techniques such as electrophoresis and chromatography [6]. With such widespread use of microfluidic systems, there is a broad range of methods to drive and control flows within these systems.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.