Abstract

Nine kinds of carbon materials were introduced into dye-sensitized solar cells (DSCs) system as counter electrodes (CEs). We also compared the electrochemical catalytic activity of these carbon materials with Pt for the reduction of triiodide to iodide by measuring cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and Tafel-polarization curve. The nine kinds of carbon materials in this work included synthesized well-ordered mesoporous carbon (Com), activated carbon (Ca), carbon black (Cb), conductive carbon (Cc), carbon dye (Cd), carbon fiber (Cf), carbon nanotube (Cn), discarded toner of a printer (Cp) and fullerene (C60). All carbon materials showed electrochemical catalytic activity for triiodide reduction in the DSCs system. In particular, the synthesized Com showed excellent electrochemical catalytic activity which can be comparable to the performance of Pt. After optimizing the proportion of TiO2 added into the carbon paste and the spray time of the carbon paste, the DSCs based on these carbon CEs achieved energy conversion efficiencies of 2.8–7.5%. The results demonstrate that carbon material is a promising substitute for the expensive Pt CE for low-cost DSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call