Abstract

A robust, low cost, open-source, and low power consumption in the research of prosthetics hand is essential. The purpose of this study is to develop a low-cost, open-source anthropomorphic prosthetics hand using linear actuator based on electromyography (EMG) signal control. The main advantages of this proposed method are the low-cost, lightweight and simplicity of controlling the prosthetic hand using only single channel. This is achieved by evaluating the DC motor and exploring number of locations of the EMG signal. The development of prosthetics hand consists of 3D anthropomorphic hand design, active electrodes, microcontroller, and linear actuator. The active electrodes recorded the EMG signal from extensor carpi radialis longus. The built-in EMG amplifier on the electrode amplified the EMG signal. Further, the A/D converter in the Arduino microcontroller converted the analog signal into digital. A filtering process consisted of bandpass and notch filter was performed before it used as a control signal. The linear actuator controlled each finger for flexion and extension motion. In the assessment of the design, the prosthetic hand capable of grasping ten objects. In this study, the cost and weight of the prosthetics hand are 471.99 US$ and 0.531 kg, respectively. This study has demonstrated the design of low cost and open-source of prosthetics hand with reasonable cost and lightweight. Furthermore, this development could be applied to amputee subjects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.