Abstract

This work presents a simple, low-cost and practical inkjet-printing technique for fabricating an innovative flexible gas sensor made of graphene–poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) composite film with high uniformity over a large area. An electronic ink prepared by graphene dispersion in PEDOT:PSS conducting polymer solution is inkjet-printed on a transparency substrate with prefabricated electrodes and investigated for ammonia (NH3) detection at room temperature. Transmission electron microscopy, Fourier transform infrared spectroscopy, UV–visible spectrometer and Raman characterizations confirm the presence of few-layer graphene in PEDOT:PSS polymer matrix and the present of π–π interactions between graphene and PEDOT:PSS. The ink-jet printed graphene–PEDOT:PSS gas sensor exhibits high response and high selectivity to NH3 in a low concentration range of 25–1000ppm at room temperature. The attained gas-sensing performance may be attributed to the increased specific surface area by graphene and enhanced interactions between the sensing film and NH3 molecules via π electrons network. The NH3-sensing mechanisms of the flexible printed gas sensor based on chemisorbed oxygen interactions, direct charge transfers and swelling process are highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.