Abstract

Low-complexity approximations of the Navier-Stokes (NS) equations are commonly used for analysis and control of turbulent flows. In particular, stochastically-forced linearized models have been successfully employed to capture structural and statistical features observed in experiments and high-fidelity simulations. In this work, we utilize stochastically-forced linearized NS equations and the parabolized stability equations to study the dynamics of flow fluctuations in transitional boundary layers. The parabolized model can be used to efficiently propagate statistics of stochastic disturbances into statistics of velocity fluctuations. Our study provides insight into the interaction of the slowly-varying base flow with streamwise streaks and Tollmien-Schlichting waves. It also offers a systematic, computationally efficient framework for quantifying the influence of stochastic excitation sources (e.g., free-stream turbulence and surface roughness) on velocity fluctuations in weakly non-parallel flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.