Abstract
Consider a Fog Radio Access Network (FRAN) in which a cloud base station (CBS) is responsible for scheduling user-equipments (UEs) to a set of radio resource blocks (RRBs) of Fog Access Points (F-APs) and for allocating power to the RRBs. The conventional graphical approach for solving the coordinated scheduling and power control problem in FRAN requires prohibitive computational complexity. This letter, instead, proposes a low-complexity solution to the problem under the constraint that all the scheduled UEs can decode the requested files sent by their associated RRBs/F-APs. Unlike previous solution that requires constructing the total power control graph, the proposed computationally efficient solution is developed using a single power control subgraph. Numerical results reveal a close-to-optimal performance of the proposed method in terms of throughput maximization for correlated channels with a significant reduction in the computational complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.