Abstract

Synthetic transmit aperture (STA) has been widely investigated in ultrasound system recently with characteristics of high frame rate and low hardware cost. Since the high-resolution image (HRI) of STA is formed by summation of low-resolution images (LRIs), it is susceptible to inter-firing motions. In this paper, we propose a low-complexity global motion compensation algorithm. We use the common region of interest (ROIcom) between different transmissions of STA imaging to beamform backward and forward beam vectors. Then, the magnitude and direction of motion can be evaluated by cross-correlations between specific beam vectors in STA imaging. Compared with the uncompensated image in two-dimentional (2D) motion environment, the proposed motion compensation algorithm can improve the contrast ratio (CR) and contrast-to-noise ratio (CNR) by 13.73 and 2.04 dB, respectively. Also, the proposed algorithm improves the CR and CNR about 7.84 and 1.36 dB comparing with the reference work, respectively. In the Field II breath model, the proposed method also improves the CR and CNR about 6.65 and 1.04 dB than the reference method, respectively. Moreover, we propose a low-complexity delay generator in the architecture design to further reduce the computational complexity of the whole beamforming system. Finally, we verify the proposed low-complexity motion compensation beamforming engine by using the VLSI implementation with CMOS 90 nm technology. In the post-layout result, the core size is 2.39 mm2 at 125 MHz operating frequency and the frame rate of the beamforming system is 42.23 frames per second.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call