Abstract

In this paper, we consider the problem of low-complexity detection of orthogonal time frequency space (OTFS) modulation signals using deep neural networks (DNN). We consider a DNN architecture in which each symbol multiplexed in the delay-Doppler grid is associated with a separate DNN. The considered symbol-level DNN has fewer parameters to learn compared to a full DNN that takes into account all symbols in an OTFS frame jointly, and therefore has less complexity. Under the assumption of static multipath channel with i.i.d. Gaussian noise, our simulation results show that the performance of the symbol-DNN detection is quite close to that of the full-DNN detection as well as the maximum-likelihood (ML) detection. Further, when the noise model deviates from the standard i.i.d. Gaussian model (e.g., non-Gaussian noise with t-distribution), because of its ability to learn the distribution, the symbol-DNN detection is found to perform better than the ML detection. A similar performance advantage is observed in multiple-input multiple-output OTFS (MIMO-OTFS) where the noise across multiple received antennas are correlated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.