Abstract
AbstractThe Malani igneous suite (MIS) in NW India represents one of the best preserved silicic large igneous provinces. Voluminous silicic lavas of the MIS erupted between ~780–750 Ma. Zircon grains from rhyolite and dacite lavas have oxygen isotopic compositions that include depleted (δ18O = 4.12 to −1.11‰) and enriched (δ18O = 8.23–5.12‰) signatures. The low‐δ18O zircon grains have highly radiogenic Hf isotopic compositions (ƐHf(t) = +13.0 to +3.6), suggesting high‐temperature bulk cannibalization of upper level juvenile mafic crust as an essential mechanism to produce the low‐δ18O felsic magma. Xenocrystic zircon grains in dacites have high δ18O and low ƐHf(t) values for magmas older than 800 Ma, reflecting a dramatic transition in tectono‐thermal regime in NW India during 800–780 Ma. A synchronous transition also occurred in south China and Madagascar, suggesting a spatially linked geodynamic system. NW India and south China together with Madagascar and the Seychelles lay either along the periphery of Rodinia or outboards of the supercontinent with the age of convergent plate margin magmatism coinciding with breakup of the supercontinent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.