Abstract
The composition and temperature dependence of the elastic properties and phase stability of quaternary Ti–Nb–Ta–Zr β-phase alloys with a body-centered cubic structure, developed for biomedical applications, were investigated using their single crystals, in order to clarify the origin of the low Young’s modulus in polycrystals. Transmission electron microscopy observations clarified that α ″ martensitic transformation occurred in a temperature range that depended on the β-phase stability below room temperature. Electromagnetic acoustic resonance measurements clarified that the shear moduli c′ and c 44 of single crystals softened upon cooling from room temperature and became rather low near the martensitic transformation start temperature, i.e. the lower limit of β-phase stability. An analysis by the Hill approximation indicates that low c′ and c 44 caused the low Young’s modulus, and thus it is probable that the softening in c′ and c 44 is the origin of the low Young’s modulus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.