Abstract

The recent progress in the manufacturing of new functional cellulose-derived materials shows that the renewable side of these materials does not ensure sustainable development. In contrast, reaction/process design and waste minimization play a key role here. Herein, reactive extrusion was used as a fast method for cellulose transesterification with vinyl laurate in 1-ethyl-3-methylimidazolium acetate (EmimOAc)/DMSO system. It was demonstrated that cellulose laurate can be synthesized with high reaction efficiency (91 %). The low amount of solvent during the process provides high cellulose concentration (20 wt%) mild chemical modification within minutes and without any depolymerization. Temperature has a significant influence on the reaction kinetics. To examine the sustainability of the process E-factor was employed. Processing properties of obtained cellulose laurates were investigated. Samples with DS of 2.5 and higher can be easily extruded showing low melt viscosity. EmimOAc was recovered and reused for subsequent cellulose transesterification exhibiting high catalytic activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.