Abstract

Monitoring of indoor air quality by detecting individual airborne pollutant is essential for maintaining a healthy indoor environment. UV absorption spectrophotometry coupled with gas chromatography offers a reliable, self-referenced and non-destructive technique for the identification and detection of gas molecules. This paper presents a deep-UV absorption spectrophotometer coupled with a micro gas-chromatography (μGC) for the detection of benzene, toluene, ethylbenzene and xylenes (BTEX). The spectrophotometer was developed using a low-volume gas cell made of PolyEther Ether Ketone (PEEK) polymer tube, connected with a portable deep-UV LED and photomultiplier tube. The performance of the detection unit was evaluated with different concentrations of toluene (5-100ppm) in nitrogen and a sensitivity of 107.1μAU/ppm with a limit of detection of 1.41ppm was obtained. The detector was incorporated into a micro gas-chromatography setup and high quality chromatograms, having all the peaks separated with good repeatability were obtained for BTEX molecules. The deep-UV absorption spectrophotometer has low-volume, low-cost, and ease of development and integration. While demonstrated for BTEX in a nitrogen carrier gas, the spectrometer has the potential to be applied to chromatographic analysis of different analytes in gas or liquid media.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call