Abstract

Nowadays, soft robots have become a research hot spot due to high degree of freedom, adaptability to the environment and safer interaction with humans. The carbon nanotube (CNT)/polydimethylsiloxane (PDMS) electrothermal composites have attracted wide attention in the field of flexible actuations due to large deformation at low voltages. Here, the preparation process of CNT/PDMS composites was designed and optimized, and electrothermal actuators (ETAs) were fabricated by cutting the CNT/PDMS composite films into a “U” shape and coating conductive adhesive. The deformation performance of the ETAs with different thicknesses at different voltages was studied. At a low voltage of about 7 V, the ETA has a deformation rate of up to 93%. Finally, two kinds of electrothermal soft robots (ETSRs) with four-legged and three-legged structures were fabricated, and their inchworm-like motion characteristics were studied. The ETSR2 has the best motion performance due to the moderate thickness and three-legged electrode structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call