Abstract

Due to rapid depletion of fossil fuel and environment concern, clean and non-polluting energy i.e. renewable energy is highly needed. Among the various renewable resources, wind energy is one of the most important and promising sources. In the recent year doubly fed induction generator (DFIG) is one of the most widely used in wind farms. But the transient stability of DFIG becomes very much sensitive and challenging concern. Three phase line-to-ground fault (3LG) is one of the worst cases of DFIG. During fault at grid side, DFIG is much affected because its stator windings are directly connected to grid. So it is important to analyse the transient stability of DFIG during fault according to fulfil the grid code requirement. To improve the transient stability and fault ride through capability of DFIG a new topology of fault current limiter (FCL) is proposed in this paper. The proposed FCL is not only limit the fault current but also faster voltage recovery. Thus improve the transient stability and fulfil the grid code requirements. For simulation analysis, PSCAD/EMTDC software is used. To determine the advantageousness of proposed FCL, its performance is compared with the conventional series dynamic resistor (SDR). Simulation results show that the proposed FCL enhances the transient stability of DFIG and better performance than SDR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call