Abstract
我们利用单层胶体球自组装模板结合电化学沉积和磁控溅射方法在覆盖Pt导电层的白云母衬底上制备了NiO纳米碗状阵列(nano-bowl-like NiO array, 简称nb-NiO). 每个NiO纳米碗高约450 nm, 碗口直径约450 nm, 碗底厚约150 nm, 在Pt导电层上密排形成二维阵列. 在nb-NiO上覆盖厚约20 nm的HfO<sub></sub>2薄膜层, 然后制备Ag或Pt点电极形成Ag(Pt)/HfO<sub></sub>2/nb-NiO/Pt堆栈结构器件. 器件在小于± 0.4 V的翻转电压下即在高低电阻态之间周期性可逆跳变, 表现出良好的电阻开关特性: 器件在高低电阻态之间翻转的时间< 8.7 μs; 初始高/低电阻比值约为10^4, 连续测试1500个周期后, 高/低电阻值比依然>10^3. 断电后, 器件稳定在高(低)电阻态的时间均>10^4 s. 纳米碗状阵列结构使得NiO厚度在150 ~ 450 nm内周期性连续变化; 由于氧空位导电细丝更易在厚度较小的纳米碗底部导通, 因此碗状阵列结构使得原本随机分布的氧空位导电细丝通道具有了局域有序性, 进而提高了器件电阻开关性能的稳定性. HfO<sub></sub>2薄膜层降低了器件漏电流, 提高了器件的高/低电阻值比. Ag电极与氧离子的氧化还原反应加速了氧空位导电细丝通道的导通和断裂, 从而降低了翻转电压.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: SCIENTIA SINICA Physica, Mechanica & Astronomica
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.