Abstract

Organic field-effect transistors (OFETs) incorporating hybrid high-κ inorganic Al2O3 and polymer dielectrics, including polyvinyl alcohol (PVA), polystyrene (PS), or polymethyl methacrylate (PMMA), through solution-processing techniques were fabricated. The analyses revealed that the high surface energy and hydrophilicity property of Al2O3 and PVA, and the relatively hydrophobic property of PS surface, hindered the performance of corresponding OFETs. The Al2O3/PMMA-based OFET achieved the optimized performance, with a threshold voltage of −2.7 V, a hole carrier mobility of 0.056 cm2/Vs, and a current on/off ratio of 1.0 × 104 at a low operating voltage of −5 V. Through analyzing the characteristics of leakage current, capacitance, contact resistance, and trap density of OFETs, we found that the PMMA-engaged films possessed the optimized electrical properties. The introduction of PMMA eliminated the interfacial trapping, thereby lowering the threshold voltage and enhancing the performance of the device. The COMSOL Multiphysics simulation was conducted to confirm the physical mechanism. The strategy of utilizing Al2O3/PMMA hybrid dielectric could simultaneously ensure the low operating voltage and good performance of OFET, while guaranteeing the low leakage current by the thick PMMA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.