Abstract

AbstractElectronics based on layered indium selenide (InSe) channels exhibit promising carrier mobility and switching characteristics. Here, an InSe tribotronic transistor (denoted as w/In InSe T‐FET) obtained through the vertical combination of an In‐doped InSe transistor and triboelectric nanogenerator is demonstrated. The w/In InSe T‐FET can be operated by adjusting the distance between two triboelectrification layers, which generates a negative electrostatic potential that serves as a gate voltage to tune the charge carrier transport behavior of the InSe channel. Benefiting from the surface charging doping of the In layer, the w/In InSe T‐FET exhibits high reliability and sensitivity with a large on/off current modulation of 106 under a low drain–source voltage of 0.1 V and external frictional force. To demonstrate its function as a power‐saving tactile sensor, the w/In InSe T‐FET is used to sense “INSE” in Morse code and power on a light‐emitting diode. This work reveals the promise of 2D material–based tribotronics for use in nanosensors with low power consumption as well as in intelligent systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.