Abstract

Research over the last ten years has resulted in attempts toward single-chip CMOS RF circuits for Bluetooth, global positioning system, digital enhanced cordless telecommunications and cellular applications. An overview of the use of CMOS for low-cost integration of a high-end cellular RF transceiver front-end is presented. Some fundamental pitfalls and limitations of RF CMOS are discussed. To circumvent these obstacles, the choice of transceiver architecture, circuit topology design, and systematic optimization of the different transceiver blocks is necessary. Moreover, optimization of the transceiver as one single block by minimizing the number of power-hungry interface circuits is emphasized. As examples, a fully integrated cellular transceiver front-end, a low-power extremely low noise-figure low-noise amplifier, and a very efficient power amplifier are demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.