Abstract

In this paper, a low voltage fully integrated Laboratory-on-Chip (LoC) for dielectrophoretic manipulation and capacitive sensing of nano and micro particles is presented. The proposed system is intended to design an implantable LoC. The lowest static power consumption of the implemented Integrated circuit is 650 μA with a voltage supply of −1.10 and +1.8 V. Three different sizes of carboxyl-modified polystyrene particles (diameters of 0.22, 0.97 and 2.04 μm) where tested experimentally with three different electrode architectures to achieve dielectrophoretic mixing and separation. U-shaped, L-shaped and octagonal electrodes are used to perform the separation and mixing operations. The biosensing part is designed with a charge based capacitive sensor with an integrated sigma-delta modulator at its output stage. It was tested experimentally with algae and ethanol. The chip size is 1.2 by 1.2 mm and it is connected to a 15 × 30 cm microfluidic design. An efficient particle manipulation was achieved by applying a voltage of 1.7 V peak to peak in the microchannel with 90 and 180° dephased signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.