Abstract
Tb3+-doped Sr3(PO4)2 phosphor was prepared by a sol–gel combustion method. A trigonal structure having Sr and O atoms occupying two different lattice sites were obtained. Scanning Auger nanoprobe was used to analyze the morphology of the particles. Photoluminescence (PL) and cathodoluminescence (CL) properties of Sr3(PO4)2:Tb powder phosphors were evaluated and compared. In addition, the CL intensity degradation of Sr3(PO4)2:Tb was evaluated when the powders were irradiated with a beam of electrons in a vacuum chamber maintained at an O2 pressure of 1×10−6Torr or a background pressure of 1×10−8Torr O2. The surface chemical composition of the degraded powders, analyzed by X-ray photoelectron spectroscopy (XPS), suggests that new compounds (metal oxides) of strontium and phosphorous were formed on the surface. It is most likely that these compounds contributed to the CL intensity degradation of the Sr3(PO4)2:Tb phosphors. The CL properties and possible mechanism by which the new metal oxides were formed on the surface due to a prolonged electron beam irradiation are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.