Abstract

The primary contributors to elevated line losses in low-voltage distribution networks are three-phase load imbalances and variations in load peak–valley differentials. The conventional manual phase sequence adjustment fails to capitalize on the temporal characteristics of the load, and the proliferation of smart homes has opened up new scheduling possibilities for managing the load. Consequently, this paper introduces a loss-reduction method for low-voltage distribution networks that leverages load-timing characteristics and adjustment capabilities. This method combines dynamic and static methods to reduce energy consumption from different time scales. To commence, this paper introduced a hierarchical fuzzy C-means algorithm (H-FCM), taking into account the distance and similarity of load curves. Subsequently, a phase sequence adjustment method, grounded in load-timing characteristics, was developed. The typical user load curve, derived from the classification of user loads, serves as the foundation for constructing a long-term commutation model, therefore mitigating the impact of load fluctuations on artificial commutation. Following this, this paper addressed the interruptible and transferable characteristics of various smart homes. This paper proposed a multi-objective transferable load (TL) optimal timing task adjustment model and a peak-shaving control strategy specifically designed for maximum sustainable power reduction of temperature-controlled loads (TCL). These strategies aim to achieve real-time load adjustment, correct static commutation errors, and reduce peak-to-valley differences. Finally, a simulation verification model was established in MATLAB (R2022a). The results show that the proposed method mainly solves the problems of three-phase imbalance and large load peak–valley difference in low-voltage distribution networks and reduces the line loss of low-voltage distribution networks through manual commutation and load adjustment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.