Abstract

In rat pulmonary vein (PV) cardiomyocytes (CM), norepinephrine (NE) induces an automatic activity consisting of bursts of slow action potentials which depend on Ca2+ (upstroke) and Na+ (inter-burst) channels. Our objective was to characterize low voltage-activated (LVA) currents in rat PVCM susceptible to trigger this activity. Whole-cell ICa (5 mM Ca2+) was recorded from - 100 mV with classical Na+- and K+-free solutions. A fast LVA ICa (FLVA-ICa), present in ≈ 56% of PVCM between ~ - 50 to - 20 mV, was blocked by 10 μM TTX and markedly increased by addition of NaCl (1 or 3 mM) or KCl (5 or 10 mM). Permeability ratios P'Ca/PNa and P'Ca/PK calculated for bi-ionic conditions were respectively 2.25 ± 0.51 and 1.88 ± 0.25, and not different from a value of 2. FLVA-ICa was increased by 10 μM NE and 300 nM BayK8644, decreased by 5 μM nifedipine but not blocked by ranolazine (10 μM). NiCl2 (40 μM) and TTA-A2 (10 or 100 nM) increased FLVA-ICa. Similar results were obtained in left atrial (LA) CM. Neither Ba2+ nor Sr2+ alone could permeate the FLVA channel or block Ca2+ influx but revealed a large slower activating and inactivating LVA Ca2+ current (SLVA-ICa), present in 10 out of 80 PVCM, absent in LACM, and partially inhibited by 100 nM TTA-A2. Therefore, the ionic channel underlying FLVA-ICa is likely a fast voltage-gated non-selective channel with a dihydropyridine binding site. SLVA-ICa might correspond to Ca2+ influx through Cav3.x channels and contribute to triggering NE-induced automatic activity in the PV myocardial sleeve.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call