Abstract

Abstract This article studies the perforation of mild steel circular plates struck normally by cylindrical projectiles having blunt, hemispherical, and conical impact faces. Experimental results are obtained using a drop hammer rig for the perforation of 2–8mm thick plates struck by projectiles weighing between 1.75kg and 176kg and traveling up to about 12m∕s. The impact positions are at several radial locations across a plate, and it turns out that the perforation energy decreases as the impact location is moved away from a plate center toward the support. It transpires that the projectiles with hemispherical and blunt impact faces require the largest and the smallest impact perforation energies, respectively. Comparisons are made between the experimental results for the perforation energies and the predictions of several empirical equations. Design calculations for the impact perforation of plates could be undertaken using projectiles with blunt impact faces, which would provide a lower bound on the perforation energy of projectiles having hemispherical or conical impact faces, at least within the range of the parameters studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.