Abstract
Unreinforced brick masonry makes up today a significant piece of the European built environment, including not only residential buildings but also strategically important structures that are not designed to withstand blasts and impacts. Yet, it is difficult to accurately estimate the response of these structures and the extent of damage they sustain during such extreme loading conditions. This paper presents the implementation and discusses the results of laboratory impact tests conducted on natural-scale double-wythe unreinforced brick masonry walls, a typology that is frequently found in Northern Europe. The walls were spanning vertically between two reinforced concrete slabs and were subjected to low-velocity drop-weight pendulum tests in which they were repeatedly hit until the opening of a breach in the centre of the wall. The tests were instrumented with both hard-wired and optical measurements, the latter consisting of high-speed cameras and digital image correlation techniques, to face the difficulty of observing cracks and determining the deflections of the walls with adequate accuracy at the time of the impact. Investigated in these tests were the out-of-plane response of the walls and their capacity to resist the impacts. The axial load applied on the top of the walls was varied for two wall configurations and monitored throughout the tests to study the effect of arching on the failure mechanism produced and number of repeated hits needed to open the breach. Of interest was also the evidence of cracking, more specifically the way it initiated on the undamaged walls and next propagated upon consecutive hits. The data generated from these tests are made available to support further investigations on masonry structures subjected to extreme actions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.