Abstract

AbstractImpact responses and damage induced by drop-weight impact on two types of glass-laminated aluminum-reinforced epoxy (GLARE) fiber-metal laminates (FMLs) were studied experimentally and numerically. Indenters with various shapes and sizes were used under different impact energies. For line-nose Charpy indenters, the effect of the angle between the indenter and the fiber direction was also investigated. Both the nondestructive ultrasonic and mechanical sectioning techniques were adopted to evaluate impact damage in the laminates. The results showed that GLARE 3 (cross-ply) offers higher impact resistance than GLARE 2 (unidirectional). The first failure at low-velocity impact occurred as delamination between the nonimpacted-side aluminum and the adjacent fiber-epoxy layer, then was followed by a visible crack in the outer aluminum layer at the nonimpacted side. More severe local damages appeared with smaller indenters, indicating that the energy dissipated mainly through delamination and cracks for s...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.