Abstract

The exoskeleton of the Homarus americanus lobster feature a hybrid-helicoidal structure of chitin-protein fibers, with distinct helicoidal configurations in the exocuticle and endocuticle, exhibiting strong impact resistance. Taking inspiration from this biological structure, combined with single-helicoidal and double-helicoidal structures, various helicoidal configurations of composite laminates were designed. Both linear and nonlinear helicoidal angles, including sinusoidal and exponential configurations, were considered. The interlaminar and intralaminar damage mode were adopted to simulate material damage initiation and evolution. The effect of helicoidal angles, position, thickness and angle variations of endocuticle on low-velocity impact resistance was analyzed, revealing the damage mechanisms of bio-inspired laminates. The results show that bio-inspired hybrid helicoidal structures with special features could significantly enhance the impact resistance of composites, with laminates featuring sinusoidal-exponential double helicoidal structures showing superior performance. Sinusoidal configurations, being less prone to penetration, are more suitable for the exocuticle. The introduction of double-helicoidal configurations could enhance the toughness and strength of the structure. This studying deepened an understanding of failure mechanisms of bio-inspired helicoidal composite laminates under low-velocity impact and provide a design strategies for developing high-performance, impact-resistant composite materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.