Abstract

This paper introduces a shell based finite element (FE) model for predicting the impact response and dominant failure mechanisms of fiber reinforced polymer matrix composites subject to low-velocity impact. The model utilizes Enhanced Schapery Theory (EST) for capturing the matrix non-linearity due to micro cracking as well as macroscopic intra-lamina failure, that is, matrix cracking and fiber rupture in the 1–2 failure plane of a lamina. Discrete cohesive elements (DCZM) are utilized for capturing the inter-lamina failure initiation and propagation. The intra- and inter-lamina damage and failure models are implemented as user subroutines in the commercial finite element solver, ABAQUS Explicit. The model is compared against low-velocity impact experimental data. High fidelity non-destructive inspection (NDI) methods are used to quantify the impact damage for a detailed comparison to the model predictions. The modeling technique shows excellent agreement with experimental results, both for impact response and damage evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call