Abstract

Ultra-high molecular weight polyethylene (UHMWPE) is one of important materials utilized against impacting threats. In this work, bulk UHMWPE specimens were fabricated in a compression molding chamber, and molding parameters such as pressure and temperature were varied in the specimen preparation stage to investigate the effect of molding parameters on the impact performance. In addition, silicon carbide fillers were included in the UHMWPE matrix to enhance the anti-impact properties of the specimens. From the results, high molding pressure provides enhanced impact resistance due to improved microstructural consolidation. On the other hand, molding temperature just above the melting point of polymer is much beneficial to the anti-impact behavior of the structures. Carbide fillers lead to an increase in the frictional interaction between the impactor and composites and thereby enhancing the impact resistance of the structures. However, the gain in the protective properties performance is restricted up to a certain amount of carbide loading because at higher filler ratios, the composites change from ductile to brittle characteristics. For this reason, crack growth susceptibility develops in the composites at excessive carbide loadings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.