Abstract

Surface-enhanced Raman spectroscopy (SERS) substrates are of utmost interest in the analyte detection of biological and chemical diagnostics. This is primarily due to the ability of SERS to sensitively measure analytes present in localized hot spots of the SERS nanostructures. In this work, we present the formation of 67 ± 6 nm diameter gold nanoparticles supported by vertically aligned shell-insulated silicon nanocones for ultralow variance SERS. The nanoparticles are obtained through discrete rotation glancing angle deposition of gold in an e-beam evaporating system. The morphology is assessed through focused ion beam tomography, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. The optical properties are discussed and evaluated through reflectance measurements and finite-difference time-domain simulations. Lastly, the SERS activity is measured by benzenethiol functionalization and subsequent Raman spectroscopy in the surface scanning mode. We report a homogeneous analytical enhancement factor of 2.2 ± 0.1 × 107 (99% confidence interval for N = 400 grid spots) and made a comparison to other lithographically derived assemblies used in SERS. The strikingly low variance (4%) of our substrates facilitates its use for many potential SERS applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.