Abstract

UVA radiation induces an inflammatory response as observed in erythema, and the cytokine genes involved in this response are under the control of the transcription factor NFAT (nuclear factor of activated T lymphocytes). The effects of UVA on NFAT DNA binding activity were investigated in cultured human fibroblasts. A dose-dependent increase was observed within the range of 0.6–4.5 J/cm 2 UVA. Beyond this value, the activity decreased and a value of 60% of control was found at 13.5 J/cm 2. The enhancement of NFAT activity was transient and peaked 45 min after irradiation. Furthermore, immunoblot analysis demonstrated a nuclear translocation of NFAT under low UVA doses. Concomitantly, as assessed by the fluorescent probe Fluo3, UVA induced an increase in intracellular free calcium, with a maximum increase found at 9 J/cm 2. The UVA-induced activation of NFAT was prevented by the intracellular calcium trapping drug BAPTA, whereas the extracellular calcium chelator EGTA had no significant effect. In addition, the calcineurin inhibitors cyclosporin A and FK506 both prevented the UVA-induced NFAT activation. Furthermore, the antioxidant vitamin E prevented the UVA-induced increase in both intracellular free calcium and NFAT binding activity. Finally, the cytotoxicity of UVA was enhanced in the presence of the inhibitors cyclosporin and FK506, suggesting that the activation of NFAT might play a protective role after the UVA-induced oxidative stress. These results demonstrate that UVA activates the calcium–calcineurin signaling pathway of NFAT activation, that the calcium ions are mainly released from intracellular stores, and that the increase in calcium is, at least partially, due to the oxidative stress generated under UVA. Because NFAT regulates several genes implicated in the inflammatory response, the enhancement of NFAT activity by low UVA doses might be interpreted in view of the proinflammatory action of solar radiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.