Abstract
AbstractLow Tucker rank tensor completion has wide applications in science and engineering. Many existing approaches dealt with the Tucker rank by unfolding matrix rank. However, unfolding a tensor to a matrix would destroy the data's original multi‐way structure, resulting in vital information loss and degraded performance. In this article, we establish a relationship between the Tucker ranks and the ranks of the factor matrices in Tucker decomposition. Then, we reformulate the low Tucker rank tensor completion problem as a multilinear low rank matrix completion problem. For the reformulated problem, a symmetric block coordinate descent method is customized. For each matrix rank minimization subproblem, the classical truncated nuclear norm minimization is adopted. Furthermore, temporal characteristics in image and video data are introduced to such a model, which benefits the performance of the method. Numerical simulations illustrate the efficiency of our proposed models and methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.