Abstract

Intra-abdominal pressure, measured at end expiration, may depend on ventilator settings and transmission of intrathoracic pressure. We determined the transmission of positive intrathoracic pressure during mechanical ventilation at inspiration and expiration into the abdominal compartment. We included 9 patients after uncomplicated cardiac surgery and 9 with acute respiratory failure. Intravesical pressures were measured thrice (reproducibility of 1.8%) and averaged, at the end of each inspiratory and expiratory hold maneuvers of 5 seconds. Transmission, the change in intra-abdominal over intrathoracic pressures from end inspiration to end expiration, was about 8%. End-expiratory intra-abdominal pressure was lower than "total" intra-abdominal pressure over the entire respiratory cycle by 0.34 cm H2O. It was 0.73 cm H2O higher than "true" intra-abdominal pressure over the entire respiratory cycle, taking transmission into account. The percentage error was 3% for total and 10% for true pressure. Results did not differ among patients with or without acute respiratory failure and decreased respiratory compliance or between those with (≥12 mm Hg, n = 5) or without intra-abdominal hypertension. Transmitted airway pressure only slightly affects intra-abdominal pressure in mechanically ventilated patients, irrespective of respiratory compliance and baseline intra-abdominal pressure values. End-expiratory measurements referenced against atmospheric pressure may suffice for clinical practice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.