Abstract

The scattering from roughly meter-sized targets, such as pipes, cylinders and unexploded ordnance shells in the 1–30 kHz frequency band is studied by numerical simulations and compared to experimental results. The numerical tool used to compute the frequency and aspect-dependent target strength is a hybrid model, consisting of a local finite-element model for the vicinity of the target, based on the decomposition of the three-dimensional scattering problem for axially symmetric objects into a series of independent two-dimensional problems, and a propagation model based on the wavenumber spectral integral representation of the Green's functions for layered media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call