Abstract

In this paper, a low-thrust, multi-revolution orbit transfer under the constraint of a complex switch function is investigated. First, the effect of the switch function, especially that of a switch function with no prior information, is analyzed. Then, by utilizing the concept of the Lyapunov feedback control law, the semi-analytical expressions of suboptimal thrust angles are derived, and a near-optimal solution could approach the optimal solution by adjusting the five weights in the Lyapunov function using sequential quadratic programming (SQP). In the novel method, except for optimization of the weight factors in the Lyapunov function, no iteration is contained in the process of design and optimization, so the method is rapid and has good convergence. This method also overcomes the drawbacks about convergence of traditional calculus of variation (COV). It is an effective method for the design of low-thrust, multi-revolution orbit transfer with no prior information switch functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.