Abstract

Low mass nuclear recoil dark matter and coherent-elastic-neutrino-nucleus-scattering (CEνNS) searches confront similar challenges in choosing ultra-low threshold and large-mass detectors. We report experimental results from a 100 g single-crystal sapphire detector design with a diameter of 76 mm and thickness of 4 mm instrumented with transition edge sensors (TES). Sapphire is a crystal of aluminum oxide (Al2O3) and has been found to be a good candidate for light mass dark matter search experiments due to its lower atomic mass compared to other detector materials such as germanium and silicon. This new phonon-assisted sapphire detector was characterized to yield a baseline recoil energy resolution of 28.4 ± 0.4 eV. The detector is designed to be sensitive to low-energy rare interactions with an intention to investigate the low-mass region of dark matter phase-space and search for CEνNS at the reactor site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call