Abstract
A high Q-factor of the nanocavity can effectively reduce the threshold of nanolasers. In this paper, a modified nanostructure composed of a silver grating on a low-index dielectric layer (LID) and a high-index dielectric layer (HID) was proposed to realize a nanolaser with a lower lasing threshold. The nanostructure supports a hybrid plasmonic waveguide mode with a very-narrow line-width that can be reduced to about 1.79 nm by adjusting the thickness of the LID/HID layer or the duty ratio of grating, and the Q-factor can reach up to about 348. We theoretically demonstrated the lasing behavior of the modified nanostructures using the model of the combination of the classical electrodynamics and the four-level two-electron model of the gain material. The results demonstrated that the nanolaser based on the hybrid plasmonic waveguide mode can really reduce the lasing threshold to 0.042 mJ/cm2, which is about three times lower than the nanolaser based on the surface plasmon. The lasing action can be modulated by the thickness of the LID layer, the thickness of the HID layer and the duty cycle of grating. Our findings could provide a useful guideline to design low-threshold and highly-efficient miniaturized lasers.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.