Abstract
We demonstrate a new CMOS compatible metal-dielectric-metal (Mo-AlN-Mo) platform of metamaterial absorber for refractory and narrowband applications at Mid IR. Comparison with the recently reported CMOS compatible plasmonic TiN shows superior reflectivity of Mo thin film at mid IR wavelengths (3–8 μm) while AlN provides large thermal stability and thermal conductivity, mid-to-far IR transparency and both second and third order nonlinear effect and satisfies the matching condition of thermal expansion coefficient with Mo toward minimizing the thermal stress. We demonstrate the proof-of-concept of reducing the thermal stress upto 400 deg. by considering a high stress, CMOS platform of SiO 2 . We further report temporal measurement of the resonance intensity and wavelength-shift of the absorber structures and confirm the robust performance of the platform over prolonged heating.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.