Abstract

The crystalline quality of AlGaN/GaN heterostructures was improved by optimization of surface pretreatment of the SiC substrate in a hot-wall metal-organic chemical vapor deposition reactor. X-ray photoelectron spectroscopy measurements revealed that oxygen- and carbon-related contaminants were still present on the SiC surface treated at 1200°C in H2 ambience, which hinders growth of thin AlN nucleation layers with high crystalline quality. As the H2 pretreatment temperature increased to 1240°C, the crystalline quality of the 105nm thick AlN nucleation layers in the studied series reached an optimal value in terms of full width at half-maximum of the rocking curves of the (002) and (105) peaks of 64 and 447arcsec, respectively. The improvement of the AlN growth also consequently facilitated a growth of the GaN buffer layers with high crystalline quality. The rocking curves of the GaN (002) and (102) peaks were thus improved from 209 and 276arcsec to 149 and 194arcsec, respectively. In addition to a correlation between the thermal resistance and the structural quality of an AlN nucleation layer, we found that the microstructural disorder of the SiC surface and the morphological defects of the AlN nucleation layers to be responsible for a substantial thermal resistance. Moreover, in order to decrease the thermal resistance in the GaN/SiC interfacial region, the thickness of the AlN nucleation layer was then reduced to 35nm, which was shown sufficient to grow AlGaN/GaN heterostructures with high crystalline quality. Finally, with the 35nm thick high-quality AlN nucleation layer a record low thermal boundary resistance of 1.3×10−8m2K/W, measured at an elevated temperature of 160°C, in a GaN-on-SiC transistor structure was achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call