Abstract
Layered electrides are a unique class of materials with anionic electrons bound in interstitial regions between thin, positively charged atomic layers. While density-functional theory is the tool of choice for computational study of electrides, there has to date been no systematic comparison of density functionals or dispersion corrections for their accurate simulation. There has also been no research into the thermomechanical properties of layered electrides, with computational predictions considering only static lattices. In this work, we investigate the thermomechanical properties of five layered electrides using density-functional theory to evaluate the magnitude of thermal effects on their lattice constants and cell volumes. We also assess the accuracy of five popular dispersion corrections with both planewave and numerical atomic orbital calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.