Abstract

We report the low thermal-emissive surface properties of composites of ZnO–polyimide. The composites were synthesized by depositing ZnO on polyimide surface by pulsed laser deposition technique. ZnO target was ablated at different incident energy densities and the substrate (polyimide) was held at elevated temperature. This facilitated the c-axis oriented growth of ZnO, which was inferred from the X-ray diffraction analysis. The composites consisted of multilayers having different electrical resistivities. The values of which are also estimated from Hagen–Rubens relation. The reduced infrared emissivities of the composite films, as compared to polyimide, were correlated to the increased carrier concentration and reduced surface resistivity estimated from the Hall measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.