Abstract

Motivated by the experimental synthesis of peanut-shaped carbon nanotubes (PSNTs) that combine the novel features of fullerene and carbon nanotubes (CNTs), we study the thermal conductivity of a PSNT (1dp08) and its response to different strains by using non-equilibrium molecular dynamics simulations and lattice dynamics together with density functional theory. We find that the thermal conductivity of the PSNT is reduced by more than 90% as compared to that of CNTs, and remains almost the same when different strains applied, exhibiting very different behaviors from that of CNTs, where the thermal conductivity decreases monotonically with the increase of strain. Through phonon mode calculations, we show that the reduced phonon group velocity, phonon lifetime and the vibrational mismatch are responsible for the low thermal conductivity of the PSNT, and the insensitive response of thermal conductivity to strain is due to the insensitivity of its phonon density of states and group velocity to strain. These features endow the PSNT with the potential applications in thermal devices, and add new features to one-dimensional carbon nanomaterials going beyond conventional CNTs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.