Abstract

Complementary and beneficial effects of Sb and Bi codoping in GeTe are shown to generate high thermoelectric figure of merit, zT, of 1.8 at 725 K in Ge1-x-yBixSbyTe samples. Sb and Bi codoping in GeTe facilitates the valence band convergence enhancing the Seebeck coefficient as supported by density functional theoretical (DFT) calculations. Further, Sb and Bi codoping in GeTe releases the rhombohedral strain and increases its tendency to be cubic in structure, which ultimately enhances the valence band degeneracy. At the same time, Bi forms nanoprecipitates of size ∼5–20 nm in GeTe matrix and Sb doping increases solid solution point defects greatly, which altogether scatter low-to mid wavelength phonons and result in reduced lattice thermal conductivity down to 0.5 W/mK in the 300–750 K range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call